Skip to main content

Integration of trigonometric functions

How do you integrate a trigonometic function? This skill is important for solving problems involving wave patterns in physics, analysing alternating current circuits in engineering and determining structural loads with curved geomoetries in architecture. Use this resource to learn how.

You already learnt about the general forms of Circular functions. Examples include \(\sin(2x+3)\), \(\cos(5x)\) and \(\sec^{2}(x-2)\).

Remember:
\[\dfrac{d}{dx}(\cos(x))dx=-\sin(x)\] \[\dfrac{d}{dx}(\sin(x))dx=\cos(x)\] \[\dfrac{d}{dx}(\tan(x))dx=\sec^{2}(x)\]

This means that the antiderivatives are:

\[\int\sin(x)dx=-\cos(x)+c\] \[\int\cos(x)dx=\sin(x)+c\] \[\int\sec^{2}(x)dx=\tan(x)+c\]

where \(c\) is a constant.

The more general forms are:

\[\begin{align*} \int\sin\left(ax+b\right)dx & =-\frac{1}{a}\cos\left(ax+b\right)+c\\ \int\cos\left(ax+b\right)dx & =\frac{1}{a}\sin\left(ax+b\right)+c\\ \int\sec^{2}\left(ax+b\right)dx & =\frac{1}{a}\tan\left(ax+b\right)+c \end{align*}\]

where \(a\), \(b\) and \(c\) are constants.

Example 1 – integrating trigonometric functions

Find \(\int5\cos(x)dx\).

Here, \(a=1\) and \(b=0\).
\[\int5\cos(x)dx=5\sin(x)+c\]

Integrate \(3\cos(3-2x)\) with respect to \(x\).

Here, \(a=-2\) and \(b=3\).
\[\int3\cos(3-2x)dx=-\dfrac{3}{2}\sin(3-2x)+c\]

Find \(\int3\sin(3-x)dx\).

Here, \(a=-1\) and \(b=3\).
\[\int3\sin(3-x)dx=3\cos(3-x)+c\]

Evaluate \(\int_{0}^{\frac{\pi}{2}}3\cos(x)dx\).
\[\begin{align*} \int_{0}^{\frac{\pi}{2}}3\cos(x)dx & = \left[3\sin(x)+c\right]_{x=0}^{x=\frac{\pi}{2}}\\
& = \left(3\sin\left(\frac{\pi}{2}\right)+c\right)-\left(3\sin\left(0\right)+c\right)\\
& =3+c-0-c\\
& =3
\end{align*}\]

Evaluate \(\int_{0}^{\frac{\pi}{4}}5\cos(x)dx\).
\[\begin{align*} \int_{0}^{\frac{\pi}{4}}5\cos(x)dx & = \left[5\sin(x)\right]_{x=0}^{x=\frac{\pi}{4}}\\
& = 5\sin\left(\frac{\pi}{4}\right)-5\sin(0)\\
& = \frac{5}{\sqrt{2}}
\end{align*}\]

Evaluate \(\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}3\cos(\pi-2x)dx\).

Remember that \(\sin\left(\dfrac{\pi}{2}\right)=1\) and \(\sin\left(\dfrac{3\pi}{2}\right)=-1\).
\[\begin{align*} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}3\cos(\pi-2x)dx & = \left[-\frac{3}{2}\sin(\pi-2x)\right]_{x=-\frac{\pi}{4}}^{x=\frac{\pi}{4}}\\
& = \left(-\frac{3}{2}\sin\left(\pi-\frac{\pi}{2}\right)\right)-\left(-\frac{3}{2}\sin\left(\pi-2\left(-\frac{\pi}{4}\right)\right)\right)\\
& = \left(-\frac{3}{2}\sin\left(\frac{\pi}{2}\right)\right)-\left(-\frac{3}{2}\sin\left(\pi+\frac{\pi}{2}\right)\right)\\
& = -\frac{3}{2}-\left(-\frac{3}{2}\left(-1\right)\right)\\
& = -\frac{3}{2}-\frac{3}{2}\\
& = -3
\end{align*}\]

Exercises

  1. Calculate the following.
    1. \(\int\sec^{2}\left(\dfrac{x}{2}\right)dx\)
    2. \(\int\sec^{2}(4x)dx\)
    3. \(\int2\cos(1-x)dx\)
    4. \(2\sin\left(\dfrac{5-3x}{4}\right)dx\)
  2. Evaluate the following.
    1. \(\int_{0}^{\frac{\pi}{2}}3\cos(2x+\pi)dx\)
    2. \(\int_{-\pi}^{0}5\sin\left(\dfrac{x}{2}\right)dx\)
    3. \(\int_{0}^{\frac{\pi}{2}}2\sec^{2}\left(\dfrac{x}{3}\right)dx\)
  3. Evaluate the folowing.
    1. \(\int_{0}^{\frac{\pi}{6}}3\sin(\pi-2x)dx\)
    2. \(\int_{0}^{\frac{2\pi}{3}}\sec^{2}\left(\dfrac{x}{2}\right)dx\)

    1. \(2\tan\left(\dfrac{x}{2}\right)+c\)
    2. \(\dfrac{1}{4}\tan(4x)+c\)
    3. \(-2\sin(1-x)+c\)
    4. \(\dfrac{8}{3}\cos\left(\dfrac{5-3x}{4}\right)+c\)
    1. \(0\)
    2. \(-10\)
    3. \(2\sqrt{3}\)
    1. \(0.75\)
    2. \(2\sqrt{3}\)

Integration of trigonometric functions in context

In acoustic engineering, the fluctuation in sound pressure levels is modelled by the function \(y=\sin(3x)\), where \(x\) represents time in seconds. Integrate this function with respect to \(x\) to determine the total sound energy over a specified interval.

\[\int \sin(3x)dx = -\frac{1}{3}\cos(3x)+c\]

Images on this page by RMIT, licensed under CC BY-NC 4.0


Keywords