

Degrees	Radians
0	0
30	$\frac{\pi}{6}$
45	$\frac{\pi}{4}$
60	$\frac{\pi}{3}$
90	$\frac{\pi}{2}$
180	π
270	$\frac{3\pi}{2}$
360	2π

T7: Trigonometric Equations

This module describes how to solve trigonometric equations over a prescribed domain. An example of such an equation is: Solve

 $\cos\theta = 0.5$

if $-\pi \leq \theta \leq 3\pi$.

Solving these types of problem is easier if you can identify the values of trigonometric functions on a unit circle as shown in the example below. You also need to understand angles in degrees and radians.

Example 1

Given that $\sin \theta = 0.3$, find all values of θ in the domain $\{\theta : 0^{\circ} \le \theta \le 360^{\circ}\}$.

Solution:

Draw a picture showing the possible positive values for θ as shown below:

There are at least two solutions shown in red and blue. We have θ_r (in red) which is given by

$$\theta_r = \sin^{-1} (0.3)$$

= 17.46°. (from calculator)

The other angle θ_b (in blue) may be found by symmetry:

$$egin{aligned} & heta_b = 180^\circ - heta_r \ & = 180^\circ - 17.46^\circ \ & = 162.54^\circ. \end{aligned}$$

Hence the solutions are $\theta = 17.46^{\circ}$, 162.54° .

Example 2

Given that $\sin \theta = 0.3$, find all values of θ such that $0^{\circ} \le \theta \le 500^{\circ}$.

Solution:

Note that this is the same problem as in Example 1 except that the domain in which we are looking for solutions has been extended to 500° .

Draw a picture showing the possible positive values for θ as shown below:

From Example 1 we know $\theta = 17.46^{\circ}$ or 162.54° . If we add 360° to each of these, they will still satisfy $\sin \theta = 0.3$. The question is, are they in the domain of interest?

Adding 360° to the solution $\theta = 17.46^{\circ}$ found in Example 1 gives

$$\theta = 17.46^{\circ} + 360^{\circ}$$

= 377.46°

which is less than 500° and so a solution to Example 2. Adding 360° to the other solution to Example 1 gives

$$\theta = 162.54^{\circ} + 360^{\circ}$$

= 522.54°

which is bigger than 500° and so not a solution to Example 2.

Hence the solutions are $\theta = 17.46^{\circ}$, 162.54° and 377.46° .

Example 3

Solve $\cos \alpha = 0.5$ over the domain $\{\alpha : 0 \le \alpha \le 2\pi\}$.

Solution:

Draw a picture showing the possible positive values for α as shown below:

Referring to the figure,

$$\alpha_1 = \cos^{-1} (0.5)$$
$$= \frac{\pi}{3} \text{ (from calculator)}$$

and from symmetry of the unit circle,

$$\begin{aligned} \alpha_2 &= 2\pi - \alpha_1 \\ &= 2\pi - \frac{\pi}{3} \\ &= \frac{5\pi}{3}. \end{aligned}$$

Hence the solution is $\alpha = \pi/3$ and $5\pi/3$.

Example 4

Solve $\cos \alpha = 0.5$ over the domain $\{\alpha : -2\pi \le \alpha \le 2\pi\}$.

Solution:

Note this is the same problem as in Example 3 but the domain has been extended.

Draw a picture showing the possible positive and negative values for α as shown below:

The two positive angles (shown in red) are the same as those in Example 3, namely

$$\alpha_1 = \frac{\pi}{3}$$
$$\alpha_2 = \frac{5\pi}{3}.$$

The negative angles (shown in blue) are α_3 and α_4 . Using the results from Example 3 and symmetry we have

$$\begin{aligned} \alpha_3 &= -\alpha_1 \\ &= -\frac{\pi}{3} \end{aligned}$$

and

$$\alpha_4 = -(2\pi - \alpha_1)$$
$$= \alpha_1 - 2\pi$$
$$= \frac{\pi}{3} - 2\pi$$
$$= -\frac{5\pi}{3}.$$

Hence the solution is $\alpha = -\frac{5\pi}{3}, -\frac{\pi}{3}, \frac{\pi}{3}, \frac{5\pi}{3}$.

Example 5

Solve $\tan(2x) = -3$ over the domain $\{x : -90^\circ \le x \le 180^\circ\}$.

Solution:

Since the variable is 2*x*, we have to redefine the domain to $\{2x : -180^\circ \le 2x \le 360^\circ\}$.

Draw a picture showing the possible positive and negative values

There are two positive angles α_1 , α_2 (shown in red) and two negative angles α_3 , α_4 (shown in blue) that may lie within $-180^\circ \le 2x \le 360^\circ$.

We have

$$\tan (2x) = -3$$

$$2x = \tan^{-1} (-3)$$

$$= -71.57^{\circ} \text{ (from calculator).}$$

Referring to the figure, we see that

$$\alpha_3 = -71.57^{\circ}$$

and

$$lpha_4 = lpha_3 - 180^\circ$$

= -71.57° - 180°
= -251.57°.

Note that this is outside of the domain for 2x and so is rejected. That is we discard α_4 .

Using the symmetry of the unit circle, we have

$$\alpha_1 = 360^\circ + \alpha_4$$

= 360° - 251.57°

= 108.43°

and using the figure,

$$\alpha_2 = \alpha_1 + 180^\circ$$

= 108.43° + 180°

= 288.43°.

Hence

$$2x = \alpha_3, \ \alpha_1, \ \alpha_2$$

= -71.57°, 108.43°, 288.43°

and the solution is

$$x = -35.79^{\circ}, 54.22^{\circ}, 144.22^{\circ}.$$

Exercises

Solve the following equations:

- a) If $\sin \phi = 0.25$ find ϕ for $0^{\circ} \le \phi \le 180^{\circ}$.
- b) If $\tan \phi = 0.8$ find ϕ for $0^{\circ} \le \phi \le 360^{\circ}$.
- c) If $\cos \phi = 0.4$ find ϕ for $0^{\circ} \le \phi \le 360^{\circ}$.
- d) If $\cos \phi = -0.4$ find ϕ for $-180^{\circ} \le \phi \le 360^{\circ}$.
- e) If $\tan \phi = -1.5$ find ϕ for $-180^{\circ} \le \phi \le 360^{\circ}$.
- f) If $\cos \phi = -0.3$ find ϕ for $0^{\circ} \le \phi \le 360^{\circ}$.

Answers

All answers are in degrees.

a)
$$14.5^{\circ}$$
, 165.5° b) 38.7° , 218.7° c) 66.4° , 293.6°
d) -113.6° , 113.6° , 246.4° e) -56.3° , 123.7° , 303.7° f) 107.5° , 252.5° .