STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

WORKED SOLUTIONS NM2.5: NUMERICAL METHODS: EULER'S METHOD

Question

Find, using Euler's method, the approximate solution of y' = x + 2y on the interval [0,0.5] with a step size of 0.1 given y(0) = 1.

Worked Solution

 $y_{n+1} = y_n + hf(x_n, y_n) \quad n=0, 1, 2, ...$ Euler's Formula is $y_{n+1} = y_n + h(y')_n$ where $(y')_n = f(x_n, y_n)$ which can be written as $x_{n+1} = x_n + h$ where h is the step size Also Since y = x + 2y we have $(y')_n = x_n + 2y_n$ <u>n=0</u>: $x_0=0, y_0=1, h=0.1, (y')_0=? y_1=?$ (since y(e) = 1) Sub into $(y')_n = x_n + 2y_n$ we get $(y')_o = x_o + 2y_o$ and so $(y')_o = 0 + 2(i) = 2$ Sub $(y')_{0} = 2$ into $y_{n+1} = y_{n} + h(y')_{n} \Rightarrow y_{1} = y_{0} + h(y')_{0}$ we get $y_1 = 1 + 0.1(2) = 1.2$

Continue in this way (n=2,3,4,5) until the interval [0,0.5] is complete.

n	xn	Yn	(y')n
0	0	1	2
١	0.1	. 1.2	2.5
2	0.2	1.45	3.1
3	0.3	1.76	3:82
4	0.4	2.142	4.684
- 5	.0.5	2.6104	5.6208

The approximate solution
$$y(0.5) = 2.6104$$

Solving this DE exactly we get $y = \frac{5}{4}e^{2x} + \frac{1}{4}(-20t-1)$
 $\Rightarrow y(0.5) = 2.8978$
Better accuracy can be achieved using smaller values of h.

NM2.5 – Numerical Methods: Eulers Method