STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

WORKED SOLUTIONS

NM2.4: NUMERICAL METHODS: BISECTION METHOD

Question

Use the bisection method to find the root of $x^2 - 3 = 0$ that lies in the interval [1,2] to a tolerance of 0.1.

Worked Solution

A tolerance of 0.05 is required so that one decimal place accuracy is achieved.

$$a_0 = 1$$
, $b_0 = 2$, $\varepsilon = 0.05$, $f(x) = x^2 - 3$
 $\ln \left(\frac{b_0 - a_0}{\varepsilon}\right) - 1 = \ln \left(\frac{2 - 1}{0.05}\right) = 4.3$

Therefore, we will use 5 iterations, n=0,1,2,3,4

Since $f(b_0) \times f(C_0) = -0.75 \times 1 = -0.75 \times 0$ then there is at least one root in the interval [1.5, 2], ie [c, b] Therefore C_0 becomes a_1 in the next iteration

$$\frac{n=1}{4}: \quad a_1 = 1.5, \quad b_1 = 2, \quad c_1 = \frac{1}{2}(a_1 + b_1) = 1.75, \quad f(x) = x^2 - 3$$

$$f(c_1) = f(1.75) = (1.75)^2 - 3 = 0.0625$$

$$f(b_1) = f(2) = 2^2 - 3 = 1$$

Since $f(b_1) \times f(C_1) = 0.0625 > 0$ then there is a root in the interval [1.5, 1.75], ie [a,c] Therefore C_1 becomes b_2 in the next iteration.

$$\Omega = 2: \quad \alpha_2 = 1.5, \quad b_2 = 1.75, \quad c_2 = \frac{1}{2}(\alpha_2 + b_2) = 1.625, \quad f(x) = 3^2 - 3$$

$$f(c_2) = f(1.625) = (1.625)^2 - 3 = -0.3594$$

$$f(b_2) = f(1.75) = (1.75)^2 - 3 = 0.0625$$

Since $f(b_2) \times f(c_2) = -0.0225 < 0$ then there must be a root in the interval [1.625, 1.75] Therefore c_2 becomes a_3 in the next iteration

n=3: $a_3=1.625$, $b_3=1.75$, $c_3=\frac{1}{2}(a_3+b_3)=1.6875$, $f(x)=x^2-3$ etc, etc, etc,...

The bisection of the interval is repeated for 5 iterations (n=0 to n=4)

The results are shown in the table below.

i	а	b	с	b-c	f(b)	f(c)	$f(b) \times f(c)$	Action
0	1	2	1.5	0.5 (> ε)	1	-0.75	< 0	a = c
1	1.5	2	1.75	0.25 (> ε)	1	1.75	> 0	b = c
2	1.5	1.75	1.625	0.125 (> ε)	0.0625	-0.3594	< 0	a = c
3	1.625	1.75	1.6875	0.0625 (> ε)	0.0625	-0.1523	< 0	a = c
4	1.6875	1.75	1.71875	0.03125 (< ε)				

Note: After 5 iterations b-c = 0.03125, and since $b-c \le E$, or 0.03125 < 0.05, the iteration is terminated.

The estimate of the root, C+, is 1.7 to 1 decimal place.

July 2012