ILS 3.1 Surds

A surd is an expression that cannot be expressed exactly without a square root, cube root or other root symbol. Because surds are irrational numbers, in decimal form they contain an infinite number of non-recurring digits.

Expressions like $\sqrt{2}$, $\sqrt{3}$, $\frac{1}{\sqrt{8}}$, $\sqrt{20}$, $\sqrt[3]{10}$, $\sqrt[4]{9}$, are all surds but $\sqrt{1}$, $\sqrt{9}$, $\frac{1}{\sqrt{100}}$, $\sqrt{25}$, $\sqrt[3]{64}$, $\sqrt[4]{16}$, are not because they can be written as 1, 3, 0.1, 5, 4 and 2 respectively.

More complex expressions such as $3\sqrt{2}$ and $\sqrt{5} - \sqrt{2}$ are also surds.

Watch a short video here.

Simplifying Surds

Rules for simplifying surds

1.
$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$$

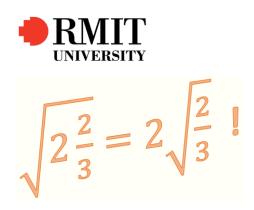
2. $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

If a square root surd has a square factor greater than 1, that is, 4, 9, 16, 25, 36... then it can be simplified. Similarly if a cube root surd has a cube factor greater than 1, that is, 8, 27, 64, 125, ..., then it can be simplified.

Examples

1. Simplify $\sqrt{200}$.

$$\sqrt{200} = \sqrt{100 \times 2}$$
 (factorize out the square factor)
= $\sqrt{100} \times \sqrt{2}$ (using Rule 1)
= $10\sqrt{2}$.



2. Simplify $\frac{\sqrt[3]{24}}{2}$.

$$\frac{\sqrt[3]{24}}{2} = \frac{\sqrt[3]{8 \times 3}}{2} \text{(factorize out the cube factor)}$$
$$= \frac{\sqrt[3]{8} \times \sqrt[3]{3}}{2} \text{ (using Rule 1)}$$
$$= \frac{2\sqrt[3]{3}}{2}$$
$$= \sqrt[3]{3}.$$

Addition and Subtraction of Surds

Only like surds can be added or subtracted.

Examples

1. Simplify $8\sqrt{5} - 3\sqrt{5}$.

$$8\sqrt{5} - 3\sqrt{5} = 5\sqrt{5}$$
 (just as $8x - 5x = 5x$.)

2. Simplify $2\sqrt{3} + 5\sqrt{7} - 10\sqrt{3}$.

$$2\sqrt{3} + 5\sqrt{7} - 10\sqrt{3} = 5\sqrt{7} - 8\sqrt{3}$$
 (just as $2x + 5y - 10x = 5y - 8x$.)

3. Simplify $\sqrt{18} - \sqrt{8} - \sqrt{20}$

$$\sqrt{18} - \sqrt{8} - \sqrt{20} = \sqrt{9 \times 2} - \sqrt{4 \times 2} - \sqrt{4 \times 5}$$
$$= 3\sqrt{2} - 2\sqrt{2} - 2\sqrt{5}$$
$$= \sqrt{2} - 2\sqrt{5}.$$

Note that $\sqrt{2} - 2\sqrt{5}$ cannot be simplified because $\sqrt{2}$ and $\sqrt{5}$ are not like surds.

Multiplication of Surds

The following rule can be used to multiply terms containing surds:

$$a\sqrt{b} \times c\sqrt{d} = ac\sqrt{bd}.$$

Examples

1. Simplify $\sqrt{2} \times \sqrt{3}$.

$$\sqrt{2} \times \sqrt{3} = \sqrt{6}.$$

2. Simplify $3\sqrt{3} \times 4\sqrt{5}$.

$$3\sqrt{3} \times 4\sqrt{5} = 12\sqrt{15}$$

3. Simplify $2\sqrt{10} \times 7\sqrt{6}$.

$$2\sqrt{10} \times 7\sqrt{6} = 14\sqrt{60} \quad \text{(which can be simplified further)}$$
$$= 14\sqrt{4 \times 15}$$
$$= 14 \times 2\sqrt{15}$$
$$= 28\sqrt{15}$$

Division of Surds

The rule $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ may helpful in simplifying fractions that contain surds.

Examples

1. $\frac{\sqrt{18}}{\sqrt{6}} = \sqrt{\frac{18}{6}} = \sqrt{3}.$ 2. $\frac{4}{\sqrt{2}} = \frac{\sqrt{16}}{\sqrt{2}} = \sqrt{\frac{16}{2}} = \sqrt{8} = \sqrt{2 \times 4} = 2\sqrt{2}.$

Expansion of Brackets

The usual algebraic rules for removing brackets apply to brackets containing surds

1.
$$a(b+c) = ab + ac$$

2. (a+b)(c+d) = ac + bc + ad + bd.

Examples

1. Simplify $\sqrt{2}(\sqrt{2}+5)$.

$$\sqrt{2}(\sqrt{2}+5) = 2 + 5\sqrt{2}$$

2. Simplify $\left(\sqrt{6}-4\sqrt{3}\right)\left(2\sqrt{2}-3\sqrt{5}\right)$.

$$\left(\sqrt{6} - 4\sqrt{3}\right) \left(2\sqrt{2} - 3\sqrt{5}\right) = 2\sqrt{12} - 8\sqrt{6} - 3\sqrt{30} + 12\sqrt{15}$$
$$= 2\sqrt{4 \times 3} - 8\sqrt{6} - 3\sqrt{30} + 12\sqrt{15}$$
$$= 2 \times 2 \times \sqrt{3} - 8\sqrt{6} - 3\sqrt{30} + 12\sqrt{15}$$
$$= 4\sqrt{3} - 8\sqrt{6} - 3\sqrt{30} + 12\sqrt{15}$$

Rationalizing Denominators

Sometimes fractions containing surds are required to be expressed with a rational denominator.

Examples

1. Rationalize the denominator of $\frac{2}{\sqrt{5}}$.

 $\frac{2}{\sqrt{5}} = \frac{2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ $= \frac{2\sqrt{5}}{5}$

2. Rationalize the denominator of $\frac{\sqrt{5}}{3\sqrt{2}}$.

$$\frac{\sqrt{5}}{3\sqrt{2}} = \frac{\sqrt{5}}{3\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$
$$= \frac{\sqrt{10}}{6}$$

¹ Note that

$$\frac{\sqrt{5}}{\sqrt{5}} = 1$$

and so multiplication by $\sqrt{5}/\sqrt{5}$ does not change the value of $2/\sqrt{5}$.

Conjugate Surds

The pair of expressions $\sqrt{a} + \sqrt{b}$ and $\sqrt{a} - \sqrt{b}$ are called conjugate surds. Each is the conjugate of the other. The product of two conjugate surds does NOT contain any surd term! That is,

$$\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=(\sqrt{a})^2-(\sqrt{b})^2=a-b.$$

For example²

$$(\sqrt{10} + \sqrt{3})(\sqrt{10} - \sqrt{3}) = (\sqrt{10})^2 - (\sqrt{3})^2$$

= 10 - 3
= 7.

We make use of this property of conjugates to rationalize denominators of the form $\sqrt{a} + \sqrt{b}$ or $\sqrt{a} - \sqrt{b}$.

Example

Rationalize the denominator of

$$\frac{\sqrt{3}}{5+\sqrt{2}}.$$

² Factorization of a difference of two squares: $(a + b) (a - b) = a^2 - b^2$.

Solution:

$$\frac{\sqrt{3}}{5+\sqrt{2}} = \frac{\sqrt{3}}{5+\sqrt{2}} \times \frac{5-\sqrt{2}}{5-\sqrt{2}}$$
$$= \frac{\sqrt{3}(5-\sqrt{2})}{(5+\sqrt{2})(5-\sqrt{2})}$$
$$= \frac{5\sqrt{3}-\sqrt{6}}{5^2-(\sqrt{2})^2}$$
$$= \frac{5\sqrt{3}-\sqrt{6}}{25-2}$$
$$= \frac{5\sqrt{3}-\sqrt{6}}{23}$$

Try Exercise 1 now.

Adding and Subtracting Fractions Involving Surds

When adding or subtracting fractions containing surds it is generally advisable to first rationalize the denominators of each fraction.

Example

Evaluate $\frac{2}{3\sqrt{2}+1} + \frac{1}{\sqrt{3}-\sqrt{2}}$. Solution:

$$\begin{aligned} \frac{2}{3\sqrt{2}+1} + \frac{1}{\sqrt{3}-\sqrt{2}} &= \frac{2}{3\sqrt{2}+1} \times \frac{3\sqrt{2}-1}{3\sqrt{2}-1} + \frac{1}{\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}} \text{(rationalize denominators)} \\ &= \frac{6\sqrt{2}-2}{18-1} + \frac{\sqrt{3}+\sqrt{2}}{3-2} \\ &= \frac{6\sqrt{2}-2}{17} + \frac{\sqrt{3}+\sqrt{2}}{1} \\ &= \frac{6\sqrt{2}-2}{17} + \frac{17\left(\sqrt{3}+\sqrt{2}\right)}{17} \text{(obtain a common denominator to add the fractions)} \\ &= \frac{6\sqrt{2}-2+17\left(\sqrt{3}+\sqrt{2}\right)}{17} \\ &= \frac{23\sqrt{2}-2+17\sqrt{3}}{17}. \end{aligned}$$

Try Exercise 2 now.

Exercise 1

Simplify

1.
$$\sqrt{500}$$

2. $\frac{2}{\sqrt{20}}$
3. $\sqrt{2} + \sqrt{7} + 3\sqrt{2} - 4\sqrt{7}$
4. $\sqrt{54} - \sqrt{24}$
5. $\sqrt{10} \times 3\sqrt{10}$
6. $2\sqrt{8} \times 2\sqrt{50} \times \sqrt{2}$
7. $\frac{\sqrt{32}}{\sqrt{2}}$
8. $\frac{4\sqrt{2} \times 3\sqrt{3}}{6\sqrt{6}}$
Answers:
1. $10\sqrt{5}$ 2. $\frac{1}{\sqrt{5}}$ 3. $4\sqrt{2} - 3\sqrt{7}$ 4. $\sqrt{6}$
5. 30 6. $80\sqrt{2}$ 7. 4 8. 2.

Exercise 2

A) Expand and simplify if possible

1.
$$\sqrt{2} \left(\sqrt{2} - 8 \right)$$

2. $\left(\sqrt{11} + 3 \right) \left(\sqrt{11} - 3 \right)$

Answers

 $1.2 - 8\sqrt{2}$ 2.2. B) Express with a rational denominator

1.
$$\frac{1}{\sqrt{10}}$$

2.
$$\frac{\sqrt{3+2}}{\sqrt{3}-2}$$

Answers 1. $\frac{\sqrt{10}}{10}$ 2. $-7 - 4\sqrt{3}$. C) Evaluate and express with a rational denominator $\frac{2}{\sqrt{3}-1} + \frac{3}{2-\sqrt{3}}$ Answer $\frac{1}{\sqrt{3}-1} = -\frac{1}{\sqrt{3}}$ $4\sqrt{3}+7$.