FG4: The Absolute Value Function

Introduction

The absolute value of a number gives a measure of its size or magnitude regardless of whether it is positive or negative.

If a number is plotted on a number line then its absolute value can be considered to be the distance from zero.

The absolute value of a number or a pro-numeral is designated by two vertical lines such as $|\cdot|$. For example the absolute value of the pro-numeral *x* is |x|.

Examples

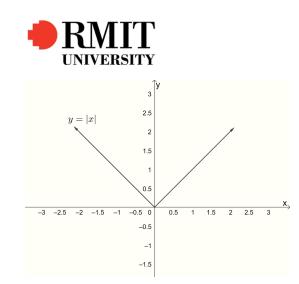
- 1. |2| = 2
- 2. |-2| = 2
- 3. |-4+3| = |-1| = 1
- 4. |-8| + |-1| = 8 + 1 = 9
- 5. $|x| = 7 \Rightarrow x = 7 \text{ or } x = -7$

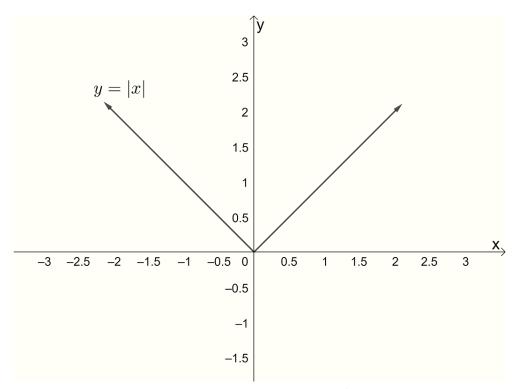
The Absolute Value Function and its Graph

The absolute value function is a hybrid function¹ defined as follows:²

$$f : \mathbb{R} \to \mathbb{R}$$
, where $f(x) = |x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$

¹ A hybrid function involves two or more cases. Each case depends on the domain of the function. ² In what follows, ℝ is the set of real numbers.

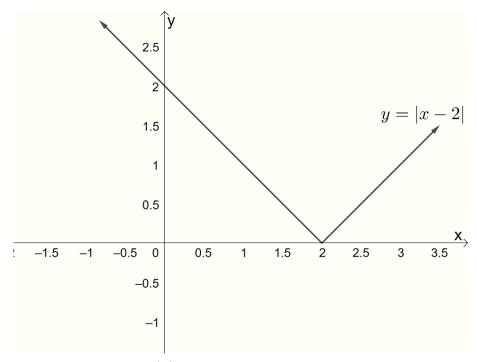




The domain of f(x)=|x| is \mathbb{R} and the range of f(x) is $\mathbb{R}^+ \cup \{0\}$. That is the set of all positive real numbers and zero.

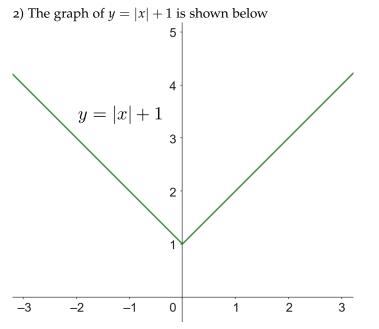
The graph of y = |x| may be translated in the same way as the graphs of other functions. Compare the graphs of the following functions with that of y = |x|

1) The graph of y = |x - 2| is shown below



and is the graph of y = |x| translated horizontally two units to the right. ³

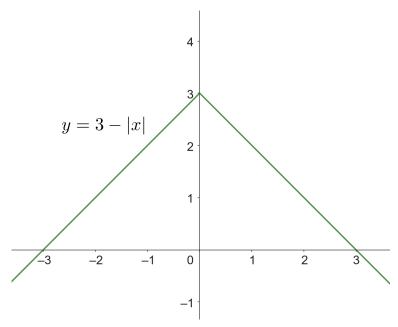
³ The graph of y = |x + 2| is the graph of y = |x| shifted two units to the left.



and is the graph of y = |x| translated vertically one unit up. ⁴

⁴ The graph of y = |x| - 1 is the graph of y = |x| translated vertically one unit down.

3) The graph of y = 3 - |x| = -|x| + 3 is shown below

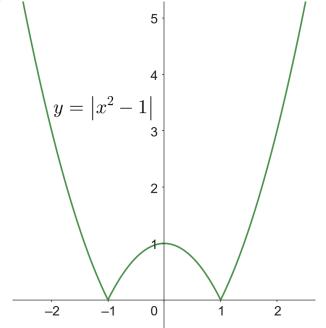


and is the graph of y = |x| reflected in the *x* axis followed by a vertical shift of three units up.

In general, to sketch the graph of y = |f(x)|, we need to sketch the graph of y = f(x) first and then reflect in the *x*-axis the portion of the graph which is below the *x*-axis.

4) Sketch $\{(x, y) : y = |x^2 - 1|\}$

The graph of this function is the graph of $y = x^2 - 1$ with the portion below the *x*-axis reflected in the *x*-axis and is shown below:



Equations and Inequalities Involving |f(x)|

Because y = |f(x)| is a hybrid function, two cases must be considered when solving equations and inequalities.

Examples

1) Solve |x - 2| = 3Solution:

If |x - 2| = 3 we must consider the two cases:

$$x - 2 = 3$$
$$x = 3 + 2$$
$$= 5$$

and

$$\begin{aligned} x - 2 &= -3\\ x &= -3 + 2\\ &= -1. \end{aligned}$$

Hence the answer is x = -1 and x = 3.

2) Solve |2x + 1| = |x - 5|.

Solution:

With an absolute value expression on each side of the equation it is easier to square both sides.

$$|2x + 1| = |x - 5|$$

$$(2x + 1)^{2} = (x - 5)^{2}$$

$$4x^{2} + 4x + 1 = x^{2} - 10x + 25$$

$$4x^{2} + 4x + 1 - x^{2} + 10x - 25 = 0$$

$$3x^{2} + 14x - 24 = 0$$

$$(3x - 4)(x + 6) = 0$$

So

or

$$\begin{aligned} x+6 &= 0\\ x &= -6. \end{aligned}$$

3x - 4 = 0

 $x = \frac{4}{3}$

Hence the answer is x = 4/3 and x = -6. 3) Find the set of $x \in \mathbb{R}$ such that $\left|\frac{2-x}{3}\right| < 4$. **Solution:** ⁵ We have

 $\left|\frac{2-x}{3}\right| < 4.$

Multiplying each side by 3 :

|2 - x| < 12

and so

-12 < 2 - x < 12.

Adding 2 to all sides we get:

$$-14 < -x < 10.$$

Multiplying by -1, and noting the reversal of the inequality signs,

$$14 > x > -10$$
 or $-10 < x < 14$.

Hence the answer is that *x* is greater than -10 but less than 14. More formally, this may be expressed as a set

$$\{x \in \mathbb{R} : -10 < x < 14\}.$$

4) Find the set of $x \in \mathbb{R}$ such that $\left|\frac{x-2}{3}\right| \ge 2$. **Solution:** Multiply both sides by 3 to get

 $|x-2| \ge 6.$

Hence

 $\begin{aligned} x - 2 &\ge 6 \\ x &\ge 8 \end{aligned}$

or

$$\begin{aligned} x - 2 &\le -6\\ x &\le -4. \end{aligned}$$

Hence the answer is

$$\{x: x \le -4\} \cup \{x: x \ge 8\}.$$

⁵ Care must be taken when multiplying or dividing an inequality by a negative number. In such cases the inequality is reversed.

The answer to this type of question is in fact a set as it involves an infinite number of solutions.

Exercise 1

Evaluate:

a) |-11| b) |-9+4| c) -|4|-|-5| d) |-12|-|3| e) $|-30| \div |5|$

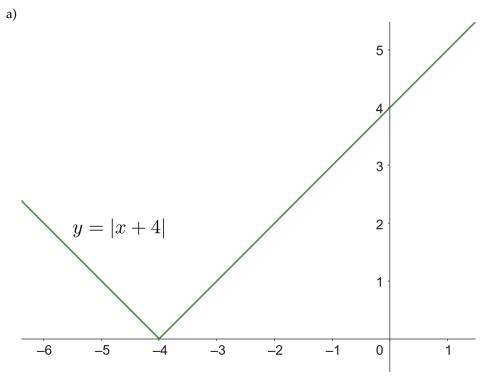
Answers

a) 11 b) 5 c) -9 d) 9 e) 6

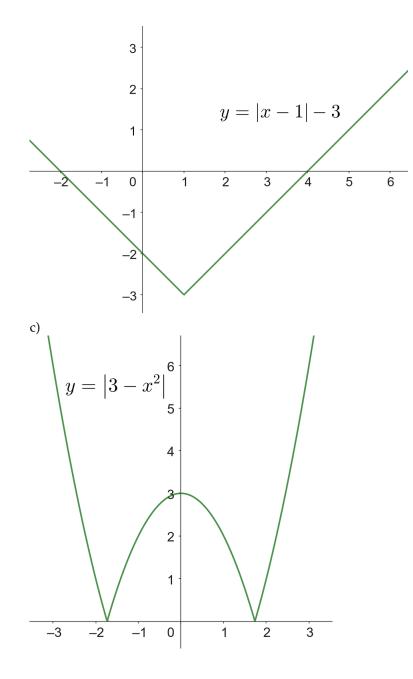
Exercise 2

Sketch the graph of a) y = |x + 4| b) y = |x - 1| - 3 c) $y = |3 - x^2|$

Answers



b)



Exercise 3

Find for $x \in \mathbb{R}$ a) $\{x : |x| = 6\}$ b) $\{x : |x - 1| < 3\}$ c) $\{x : |\frac{x - 3}{2}| \ge 1\}$ d) $\{x : |\frac{x}{2}| = |x + 2|\}$ Answers

a.
$$\{-6, 6\}$$
 b. $\{x : -2 < x < 4\}$ c. $\{x : x \le 1\} \cup \{x : x \ge 5\}$ d. $\{-4, -\frac{4}{3}\}$