STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS



## **DE3 SECOND ORDER HOMOGENEOUS**

## Second Order Differential Equation with Constant Coefficients

The general expression of a second order differential equation is:  $a_1 \frac{d^2y}{dx^2} + a_2 \frac{dy}{dx} + a_3 y = f(x)$ We shall only look at DE's where  $a_1$ ,  $a_2$ , and  $a_3$  are constants. When f(x) = 0, then the DE is termed a *Homogenous Differential Equation*.

Example

Solve for y(x) given  $2\frac{d^2y}{dx^2} - 5\frac{dy}{dx} - 3y = 0$ 

Solution:

To solve this DE, we first need its *auxiliary equation*. To generate the auxiliary equation, let:

i. 
$$\frac{d^2y}{dx^2} = m^2$$
  
ii. 
$$\frac{dy}{dx} = m$$
  
iii. 
$$y = 1$$

In this case the auxiliary equation is:  $2m^2 - 5m - 3 = 0$ Factorising the auxiliary equation and solving for *m*:

> (2m + 1)(m - 3) = 0  $\therefore 2m + 1 = 0$  or m - 3 = 0 $m_1 = -\frac{1}{2}$  or  $m_2 = 3$

The next step is to generate the *complimentary function*,  $y_c(t)$ .

 $y_c(t)$  is defined by the solution to the auxiliary equation, as given in the table:

| Solution to auxiliary equation:  |                          | Complimentary function:                                   |
|----------------------------------|--------------------------|-----------------------------------------------------------|
| Two real and different solutions | $m_1 \& m_2$             | $y_c(t) = Ae^{m_1 t} + Be^{m_2 t}$                        |
| One real, repeated solution      | $m_1 = m_2$              | $y_c(t) = (At + B)e^{mt}$                                 |
| Complex solution                 | $m = \alpha \pm \beta i$ | $y_c(t) = e^{\alpha t} (A \cos \beta t + B \sin \beta t)$ |

Therefore the complimentary function is:

 $y_c(x) = Ae^{-\frac{1}{2}x} + Be^{3x}$ 

For a homogenous second order differential equation with constant coefficients, the complimentary function is the solution to the differential equation.

a. 
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13y = 0$$
  
b. 
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0$$
  
c. 
$$2\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$$
  
d. 
$$y'' - 10y' + 25y = 0$$
  
e. 
$$y'' + y' + y = 0$$

Answers

- a.  $y = e^{3x} (C \cos 2x + D \sin 2x)$
- b.  $y = Ae^{3x} + Bxe^{3x}$
- c.  $y = Ae^{-\frac{3}{2}x} + Be^{2x}$
- d.  $y = Ae^{5x} + Bxe^{5x}$
- e.  $y = e^{-\frac{x}{2}} (A \cos \frac{\sqrt{3}}{2} x + A \sin \frac{\sqrt{3}}{2} x)$

## Initial value & Boundary value conditions

If initial value or boundary values are given for the differential equation, then it is possible to determine the values of the constants in the complimentary function.

## Example

Find the solution to the differential equation  $6\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 4y = 0$  with boundary conditions y(0) = 11 and  $\frac{dy}{dx}(0) = 0$ . SoLution: Auxiliary equation:  $6m^2 + 5m - 4 = 0$ Factorise: (2m-1)(3m+4) = 0 $\therefore m = \frac{1}{2}$  or  $m = -\frac{4}{3}$  Two real and different solutions. Complimentary function:  $y_c = Ae^{\frac{1}{2}x} + Be^{-\frac{4}{3}x}$  $\frac{dy}{dx} = \frac{1}{2}Ae^{\frac{1}{2}x} - \frac{4}{3}Be^{-\frac{4}{3}x}$ Differentiating gives: Substituting boundary values to solve for *A* and *B*:  $11 = Ae^0 + Be^0 \quad \rightarrow \quad A = 11 - B$ eqn 1  $0 = \frac{1}{2}Ae^0 - \frac{4}{3}Be^0 \rightarrow \frac{3}{8}A = B$ eqn 2 Substituting eqn 1 into eqn 2 gives:  $A = 11 - \frac{3}{8}A$ A = 8 and B = 3 $v_c = 8e^{\frac{1}{2}x} + 3e^{-\frac{4}{3}x}$ 

Solve the following equations:

(a) 
$$6\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 6y = 0$$
 given  $y = 5$  and  $\frac{dy}{dx} = -1$  when  $x = 0$   
(b)  $4\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + y = 0$  given  $y = 1$  and  $\frac{dy}{dx} = -2$  when  $x = 0$   
(c)  $\ddot{x} - 6\dot{x} + 9x = 0$  given  $x(0) = 2$  and  $\dot{x}(0) = 0$   
(d)  $y'' + 6y' + 13y = 0$  given  $y(0) = 4$  and  $y'(0) = 0$ 

**Answers** 

(a) 
$$y = 3e^{\frac{2}{3}x} + 2e^{-\frac{3}{2}x}$$
 (b)  $y = 4e^{\frac{1}{4}x} - 3e^{x}$  (c)  $x = 2e^{3t}(1-3t)$  (d)  $y = 2e^{-3x}(2\cos 2x + 3\sin 2x)$