

D9: Curve Sketching

To sketch a curve it is helpful to find the

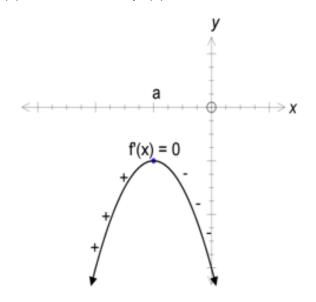
- 1. *x* and *y* intercepts
- 2. Maximum and minimum points.

This module describes how to do this.

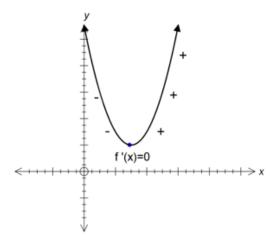
Definition of Maximum and Minimum

A stationary point is a point on a graph of a function y = f(x)where the tangent to the curve is horizontal. At a stationary point the derivative function y = f'(x) = 0.

A **maximum** stationary point occurs at x = a if f'(a) = 0 and f'(x) > 0 for x < a and f'(x) < 0 for x > a as shown below.



A **minimum** stationary point occurs at x = a if f'(a) = 0 and f'(x) < 0 for x < a and f'(x) > 0 for x > a as shown below.



Find the turning point of the parabola defined by $y = x^2 + 4x + 5$ and determine if it is a maximum or minimum.

Solution

Let

 $f(x) = x^2 + 4x + 5$

then

$$f'(x) = 2x + 4.$$

At a stationary point, f'(x) = 0, so

$$2x + 4 = 0$$
$$2x = -4$$
$$x = -2$$

is the *x*-coordinate of a stationary point. When x = -2,

$$f(-2) = (-2)^2 + 4(-2) + 5$$

= 1.

Hence the coordinates of the stationary point are (-2, 1). Now we ascertain if it is a maximum or minimum.

A sign test can be used to determine whether the stationary point is minimum or a maximum by checking the slope of the tangent on each side of the stationary point. Consider the table below.

x	-2.1	-2	-1.9
f'(x)	- ve	0	+ ve
gradient	١	-	/

As we move from the left to the right of the stationary point at x = -2, the gradient changes from negative to positive. This indicates there is a minimum at (-2, 1).

Hence the turning point of the parabola is a minimum and occurs at (-2, 1).

Example 2

Sketch the graph of $y = x^3 - x$. Solution strategy:

- 1. Find intercepts on x-axis.
- 2. Find stationary points.
- 3. Establish if stationary points are maximum or minimum values.
- 4. Plot intercepts and stationary points and sketch the graph.

Solution

For *x*-axis intercepts, we set y = 0, so

$$0 = x^3 - x$$
$$= x \left(x^2 - 1 \right).$$

Consequently, x = 0 or

$$x^2 - 1 = 0$$

 $x = 1 \text{ or } -1.$

Hence the *x*-axis intercepts are (-1, 0), (0, 0) and (1, 0).

For stationary points,

$$\frac{dy}{dx} = 0$$

that is

$$3x^{2} - 1 = 0$$
$$x^{2} = \frac{1}{3}$$
$$x = \pm \frac{1}{\sqrt{3}}$$
$$\approx \pm 0.58.$$

Substituting these *x* values back in $y = x - x^3$ gives for $x = 1/\sqrt{3}$,

$$y = \left(\frac{1}{\sqrt{3}}\right)^3 - \frac{1}{\sqrt{3}}$$
$$\approx -0.39.$$

For $x = -1/\sqrt{3}$

$$y = \left(-\frac{1}{\sqrt{3}}\right)^3 - \left(-\frac{1}{\sqrt{3}}\right)$$
$$\approx 0.38.$$

Hence the stationary points occur at approximately, (0.58, -0.39) and (-0.58, 0.38). Now we decide if these points are maxima or minima. Consider the tables below.

For $x \approx 0.58$ we have

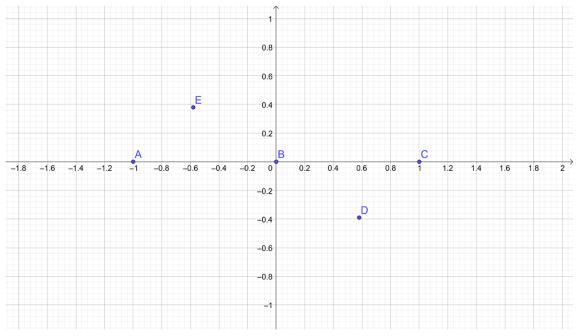
x	0.5	0.58	0.6
f'(x)	- ve	0	+ ve
gradient	١	-	/

and so the point $x = 1/\sqrt{3} \approx 0.58$ is a minimum. For $x \approx -0.58$ we have

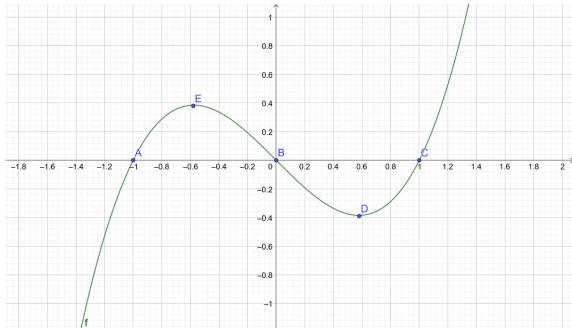
x	-0.6	-0.58	-0.5
f'(x)	+ ve	0	- ve
gradient	/	-	/

and so the point $x = -1/\sqrt{3} \approx -0.58$ is a maximum.

We can now graph $y = x^3 - x$. First plot the *x*-intercepts and the stationary points:



We know *E* is a maximum and *D* is a minimum and so can graph $y = x^3 - x$ as shown below.



Exercise

Sketch the graphs of the following functions showing all intercepts and turning points

1. $y = x^2 - 4x$

2.
$$y = x^3 - 2x^2 + x$$

3. $y = 6 - x - x^2$

4. $y = (x+1)^4$

Answers

