Integration of trigonometric functions
How do you integrate a trigonometic function? This skill is important for solving problems involving wave patterns in physics, analysing alternating current circuits in engineering and determining structural loads with curved geomoetries in architecture. Use this resource to learn how.
You already learnt about the general forms of Circular functions . Examples include \(\sin(2x+3)\), \(\cos(5x)\) and \(\sec^{2}(x-2)\).
Remember:
\[\dfrac{d}{dx}(\cos(x))dx=-\sin(x)\] \[\dfrac{d}{dx}(\sin(x))dx=\cos(x)\] \[\dfrac{d}{dx}(\tan(x))dx=\sec^{2}(x)\]
This means that the antiderivatives are:
\[\int\sin(x)dx=-\cos(x)+c\] \[\int\cos(x)dx=\sin(x)+c\] \[\int\sec^{2}(x)dx=\tan(x)+c\]
where \(c\) is a constant.
The more general forms are:
\[\begin{align*} \int\sin\left(ax+b\right)dx & =-\frac{1}{a}\cos\left(ax+b\right)+c\\ \int\cos\left(ax+b\right)dx & =\frac{1}{a}\sin\left(ax+b\right)+c\\ \int\sec^{2}\left(ax+b\right)dx & =\frac{1}{a}\tan\left(ax+b\right)+c \end{align*}\]
where \(a\), \(b\) and \(c\) are constants.
Example 1 – integrating trigonometric functions
Find \(\int5\cos(x)dx\).
Here, \(a=1\) and \(b=0\).
\[\int5\cos(x)dx=5\sin(x)+c\]
Integrate \(3\cos(3-2x)\) with respect to \(x\).
Here, \(a=-2\) and \(b=3\).
\[\int3\cos(3-2x)dx=-\dfrac{3}{2}\sin(3-2x)+c\]
Find \(\int3\sin(3-x)dx\).
Here, \(a=-1\) and \(b=3\).
\[\int3\sin(3-x)dx=3\cos(3-x)+c\]
Evaluate \(\int_{0}^{\frac{\pi}{2}}3\cos(x)dx\).
\[\begin{align*} \int_{0}^{\frac{\pi}{2}}3\cos(x)dx & = \left[3\sin(x)+c\right]_{x=0}^{x=\frac{\pi}{2}}\\
& = \left(3\sin\left(\frac{\pi}{2}\right)+c\right)-\left(3\sin\left(0\right)+c\right)\\
& =3+c-0-c\\
& =3
\end{align*}\]
Evaluate \(\int_{0}^{\frac{\pi}{4}}5\cos(x)dx\).
\[\begin{align*} \int_{0}^{\frac{\pi}{4}}5\cos(x)dx & = \left[5\sin(x)\right]_{x=0}^{x=\frac{\pi}{4}}\\
& = 5\sin\left(\frac{\pi}{4}\right)-5\sin(0)\\
& = \frac{5}{\sqrt{2}}
\end{align*}\]
Evaluate \(\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}3\cos(\pi-2x)dx\).
Remember that \(\sin\left(\dfrac{\pi}{2}\right)=1\) and \(\sin\left(\dfrac{3\pi}{2}\right)=-1\).
\[\begin{align*} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}3\cos(\pi-2x)dx & = \left[-\frac{3}{2}\sin(\pi-2x)\right]_{x=-\frac{\pi}{4}}^{x=\frac{\pi}{4}}\\
& = \left(-\frac{3}{2}\sin\left(\pi-\frac{\pi}{2}\right)\right)-\left(-\frac{3}{2}\sin\left(\pi-2\left(-\frac{\pi}{4}\right)\right)\right)\\
& = \left(-\frac{3}{2}\sin\left(\frac{\pi}{2}\right)\right)-\left(-\frac{3}{2}\sin\left(\pi+\frac{\pi}{2}\right)\right)\\
& = -\frac{3}{2}-\left(-\frac{3}{2}\left(-1\right)\right)\\
& = -\frac{3}{2}-\frac{3}{2}\\
& = -3
\end{align*}\]
Exercises
Calculate the following.
\(\int\sec^{2}\left(\dfrac{x}{2}\right)dx\)
\(\int\sec^{2}(4x)dx\)
\(\int2\cos(1-x)dx\)
\(2\sin\left(\dfrac{5-3x}{4}\right)dx\)
Evaluate the following.
\(\int_{0}^{\frac{\pi}{2}}3\cos(2x+\pi)dx\)
\(\int_{-\pi}^{0}5\sin\left(\dfrac{x}{2}\right)dx\)
\(\int_{0}^{\frac{\pi}{2}}2\sec^{2}\left(\dfrac{x}{3}\right)dx\)
Evaluate the folowing.
\(\int_{0}^{\frac{\pi}{6}}3\sin(\pi-2x)dx\)
\(\int_{0}^{\frac{2\pi}{3}}\sec^{2}\left(\dfrac{x}{2}\right)dx\)
\(2\tan\left(\dfrac{x}{2}\right)+c\)
\(\dfrac{1}{4}\tan(4x)+c\)
\(-2\sin(1-x)+c\)
\(\dfrac{8}{3}\cos\left(\dfrac{5-3x}{4}\right)+c\)
\(0\)
\(-10\)
\(2\sqrt{3}\)
\(0.75\)
\(2\sqrt{3}\)
Integration of trigonometric functions in context
In
acoustic engineering , the fluctuation in sound pressure levels is modelled by the function \(y=\sin(3x)\), where \(x\) represents time in seconds. Integrate this function with respect to \(x\) to determine the total sound energy over a specified interval.
\[\int \sin(3x)dx = -\frac{1}{3}\cos(3x)+c\]
Images on this page by RMIT , licensed under CC BY-NC 4.0
Copy the iframe code above.
Go to the course in Canvas where you want to add the content.
Navigate to the page or module where you want to embed the content.
In the Rich Content Editor, click on the "HTML Editor" link.
Paste the iframe code into the HTML area.
Switch back to the Rich Content Editor to see the embedded content.
Save the changes to your page or module.
Note: Ensure that your permissions allow embedding external content in your Canvas LMS instance.